查看原文
其他

运气真好!B站给机会了?

小林coding 小林coding 2024-04-19

图解学习网站:xiaolincoding.comI

大家好,我是小林。

还有 2 周就春节了,应该很多在工作的同学都懈怠了,没心思工作,就等放假这一天,包含我自己也是,忙碌了一年,也想在春节好好放松一些

但是还有校招同学就不一样了,大四/研三想着春招的准备,大三/研二想着暑期实习的准备,很多人都在快马加鞭的复习。

最近,不少三/研二同学最近都在问我春招实习啥时候开始的事情,能感觉到大家都想在这最后的时间冲刺一波。

春招实习(暑期实习)持续的时间还蛮长的,2-7月份都有机会投实习,越早投机会会越大一点,因为时间越早,能准备到面试的同学就越少,竞争就相对越少,时间往后拖太久,越来越多人八股+项目+算法都准备好了,那么跟你竞争的人就越多了,面试的要求也相对应会更高。

之前接触过一些双非本科进大厂实习的,都是 2 月份第一波开始的时候,就马上投了,运气好还是有机会获得大厂的面试,面试表现不错的,说不定就可以直接去大厂实习了。

但是时间过几个月后,各种 211&985 院校的同学都开始投起来了,就会更卷了,hr 为了提高筛选效率,可能就开始被卡学历了。

为了给校招同学加油打气,这段时间小林也多分享一下校招面经,大家根据我的文章也可以快速复习一下知识点,抓面试的重点知识来复习,效率是很高的。

这次给大家分享一位 go 后端同学面试B站的实习面经,包含一二面,我也针对性做了一些解析,都是经典问题!

主要考察的知识内容(全考后端组件的内容了,编程语言没有问):

  • mysql:存储引擎、隔离级别、mvcc、锁
  • redis:数据结构、线程模型、持久化、网络模型
  • 网络:tcp、grpc、http
  • 算法、项目
同学反馈运气不错,一二面遇到的面试官都很好,没有问刁钻问题!

B站后端开发实习一面(45分钟)

InnoDB索引有哪些?

从数据结构的角度来看,MySQL 常见索引有 B+Tree 索引、HASH 索引、Full-Text 索引。

每一种存储引擎支持的索引类型不一定相同,我在表中总结了 MySQL 常见的存储引擎 InnoDB、MyISAM 和 Memory 分别支持的索引类型。

img

InnoDB 是在 MySQL 5.5 之后成为默认的 MySQL 存储引擎,B+Tree 索引类型也是 MySQL 存储引擎采用最多的索引类型。

聚簇和非聚簇有什么区别?

索引又可以分成聚簇索引和非聚簇索引(二级索引),它们区别就在于叶子节点存放的是什么数据:

  • 聚簇索引的叶子节点存放的是实际数据,所有完整的用户记录都存放在聚簇索引的叶子节点;
  • 二级索引的叶子节点存放的是主键值,而不是实际数据。

因为表的数据都是存放在聚簇索引的叶子节点里,所以 InnoDB 存储引擎一定会为表创建一个聚簇索引,且由于数据在物理上只会保存一份,所以聚簇索引只能有一个。

主键索引的 B+Tree 如图所示:

主键索引 B+Tree

一张表只能有一个聚簇索引,那为了实现非主键字段的快速搜索,就引出了二级索引(非聚簇索引/辅助索引),它也是利用了 B+ 树的数据结构,但是二级索引的叶子节点存放的是主键值,不是实际数据。

二级索引的 B+ 树如下图,数据部分为主键值:

二级索引 B+Tree

因此,如果某个查询语句使用了二级索引,但是查询的数据不是主键值,这时在二级索引找到主键值后,需要去聚簇索引中获得数据行,这个过程就叫作「回表」,也就是说要查两个 B+ 树才能查到数据。

回表

不过,当查询的数据是主键值时,因为只在二级索引就能查询到,不用再去聚簇索引查,这个过程就叫作「索引覆盖」,也就是只需要查一个 B+ 树就能找到数据。

介绍一下MySQL四个隔离级别

SQL 标准提出了四种隔离级别来规避这些现象,隔离级别越高,性能效率就越低,这四个隔离级别如下:

  • 读未提交(*read uncommitted*),指一个事务还没提交时,它做的变更就能被其他事务看到;
  • 读提交(*read committed*),指一个事务提交之后,它做的变更才能被其他事务看到;
  • 可重复读(*repeatable read*),指一个事务执行过程中看到的数据,一直跟这个事务启动时看到的数据是一致的,MySQL InnoDB 引擎的默认隔离级别
  • 串行化(*serializable* );会对记录加上读写锁,在多个事务对这条记录进行读写操作时,如果发生了读写冲突的时候,后访问的事务必须等前一个事务执行完成,才能继续执行;

按隔离水平高低排序如下:

图片

针对不同的隔离级别,并发事务时可能发生的现象也会不同。

图片

也就是说:

  • 在「读未提交」隔离级别下,可能发生脏读、不可重复读和幻读现象;
  • 在「读提交」隔离级别下,可能发生不可重复读和幻读现象,但是不可能发生脏读现象;
  • 在「可重复读」隔离级别下,可能发生幻读现象,但是不可能脏读和不可重复读现象;
  • 在「串行化」隔离级别下,脏读、不可重复读和幻读现象都不可能会发生。

所以,要解决脏读现象,就要升级到「读提交」以上的隔离级别;要解决不可重复读现象,就要升级到「可重复读」的隔离级别,要解决幻读现象不建议将隔离级别升级到「串行化」。

不同的数据库厂商对 SQL 标准中规定的 4 种隔离级别的支持不一样,有的数据库只实现了其中几种隔离级别,我们讨论的 MySQL 虽然支持 4 种隔离级别,但是与SQL 标准中规定的各级隔离级别允许发生的现象却有些出入

MySQL 在「可重复读」隔离级别下,可以很大程度上避免幻读现象的发生(注意是很大程度避免,并不是彻底避免),所以 MySQL 并不会使用「串行化」隔离级别来避免幻读现象的发生,因为使用「串行化」隔离级别会影响性能。

mvcc机制是怎么实现的?

我们需要了解两个知识:

  • Read View 中四个字段作用;
  • 聚簇索引记录中两个跟事务有关的隐藏列;

那 Read View 到底是个什么东西?

img

Read View 有四个重要的字段:

  • m_ids :指的是在创建 Read View 时,当前数据库中「活跃事务」的事务 id 列表,注意是一个列表,“活跃事务”指的就是,启动了但还没提交的事务
  • min_trx_id :指的是在创建 Read View 时,当前数据库中「活跃事务」中事务 id 最小的事务,也就是 m_ids 的最小值。
  • max_trx_id :这个并不是 m_ids 的最大值,而是创建 Read View 时当前数据库中应该给下一个事务的 id 值,也就是全局事务中最大的事务 id 值 + 1;
  • creator_trx_id :指的是创建该 Read View 的事务的事务 id

知道了 Read View 的字段,我们还需要了解聚簇索引记录中的两个隐藏列。

假设在账户余额表插入一条小林余额为 100 万的记录,然后我把这两个隐藏列也画出来,该记录的整个示意图如下:

图片

对于使用 InnoDB 存储引擎的数据库表,它的聚簇索引记录中都包含下面两个隐藏列:

  • trx_id,当一个事务对某条聚簇索引记录进行改动时,就会把该事务的事务 id 记录在 trx_id 隐藏列里
  • roll_pointer,每次对某条聚簇索引记录进行改动时,都会把旧版本的记录写入到 undo 日志中,然后这个隐藏列是个指针,指向每一个旧版本记录,于是就可以通过它找到修改前的记录。

在创建 Read View 后,我们可以将记录中的 trx_id 划分这三种情况:

img

一个事务去访问记录的时候,除了自己的更新记录总是可见之外,还有这几种情况:

  • 如果记录的 trx_id 值小于 Read View 中的 min_trx_id 值,表示这个版本的记录是在创建 Read View 已经提交的事务生成的,所以该版本的记录对当前事务可见
  • 如果记录的 trx_id 值大于等于 Read View 中的 max_trx_id 值,表示这个版本的记录是在创建 Read View 才启动的事务生成的,所以该版本的记录对当前事务不可见
  • 如果记录的 trx_id 值在 Read View 的min_trx_id和max_trx_id之间,需要判断 trx_id 是否在 m_ids 列表中:
    • 如果记录的 trx_id m_ids 列表中,表示生成该版本记录的活跃事务依然活跃着(还没提交事务),所以该版本的记录对当前事务不可见
    • 如果记录的 trx_id 不在 m_ids列表中,表示生成该版本记录的活跃事务已经被提交,所以该版本的记录对当前事务可见

这种通过「版本链」来控制并发事务访问同一个记录时的行为就叫 MVCC(多版本并发控制)。

redis有哪些常用结构?

Redis 提供了丰富的数据类型,常见的有五种数据类型:String(字符串),Hash(哈希),List(列表),Set(集合)、Zset(有序集合)

img
img

Redis 五种数据类型的应用场景:

  • String 类型的应用场景:缓存对象、常规计数、分布式锁、共享 session 信息等。
  • List 类型的应用场景:消息队列(但是有两个问题:1. 生产者需要自行实现全局唯一 ID;2. 不能以消费组形式消费数据)等。
  • Hash 类型:缓存对象、购物车等。
  • Set 类型:聚合计算(并集、交集、差集)场景,比如点赞、共同关注、抽奖活动等。
  • Zset 类型:排序场景,比如排行榜、电话和姓名排序等。

随着 Redis 版本的更新,后面又支持了四种数据类型:BitMap(2.2 版新增)、HyperLogLog(2.8 版新增)、GEO(3.2 版新增)、Stream(5.0 版新增)

它们的应用场景如下:

  • BitMap(2.2 版新增):二值状态统计的场景,比如签到、判断用户登陆状态、连续签到用户总数等;
  • HyperLogLog(2.8 版新增):海量数据基数统计的场景,比如百万级网页 UV 计数等;
  • GEO(3.2 版新增):存储地理位置信息的场景,比如滴滴叫车;
  • Stream(5.0 版新增):消息队列,相比于基于 List 类型实现的消息队列,有这两个特有的特性:自动生成全局唯一消息ID,支持以消费组形式消费数据。

redis是单线程还是多线程?

Redis 单线程指的是「接收客户端请求->解析请求 ->进行数据读写等操作->发送数据给客户端」这个过程是由一个线程(主线程)来完成的,这也是我们常说 Redis 是单线程的原因。

但是,Redis 程序并不是单线程的,Redis 在启动的时候,是会启动后台线程(BIO)的:

  • Redis 在 2.6 版本,会启动 2 个后台线程,分别处理关闭文件、AOF 刷盘这两个任务;
  • Redis 在 4.0 版本之后,新增了一个新的后台线程,用来异步释放 Redis 内存,也就是 lazyfree 线程。例如执行 unlink key / flushdb async / flushall async 等命令,会把这些删除操作交给后台线程来执行,好处是不会导致 Redis 主线程卡顿。因此,当我们要删除一个大 key 的时候,不要使用 del 命令删除,因为 del 是在主线程处理的,这样会导致 Redis 主线程卡顿,因此我们应该使用 unlink 命令来异步删除大key。

在 Redis 6.0 版本之后,也采用了多个 I/O 线程来处理网络请求这是因为随着网络硬件的性能提升,Redis 的性能瓶颈有时会出现在网络 I/O 的处理上

所以为了提高网络 I/O 的并行度,Redis 6.0 对于网络 I/O 采用多线程来处理。但是对于命令的执行,Redis 仍然使用单线程来处理,所以大家不要误解 Redis 有多线程同时执行命令。

Redis 官方表示,Redis 6.0 版本引入的多线程 I/O 特性对性能提升至少是一倍以上

redis数据持久化有哪些,怎么实现的?

Redis 的读写操作都是在内存中,所以 Redis 性能才会高,但是当 Redis 重启后,内存中的数据就会丢失,那为了保证内存中的数据不会丢失,Redis 实现了数据持久化的机制,这个机制会把数据存储到磁盘,这样在 Redis 重启就能够从磁盘中恢复原有的数据。

Redis 共有三种数据持久化的方式:

  • AOF 日志:每执行一条写操作命令,就把该命令以追加的方式写入到一个文件里;
  • RDB 快照:将某一时刻的内存数据,以二进制的方式写入磁盘;

AOF 日志是如何实现的?

Redis 在执行完一条写操作命令后,就会把该命令以追加的方式写入到一个文件里,然后 Redis 重启时,会读取该文件记录的命令,然后逐一执行命令的方式来进行数据恢复。

img

我这里以「set name xiaolin」命令作为例子,Redis 执行了这条命令后,记录在 AOF 日志里的内容如下图:

img

我这里给大家解释下。

「*3」表示当前命令有三个部分,每部分都是以「$+数字」开头,后面紧跟着具体的命令、键或值。然后,这里的「数字」表示这部分中的命令、键或值一共有多少字节。例如,「$3 set」表示这部分有 3 个字节,也就是「set」命令这个字符串的长度。

RDB 快照是如何实现的呢?

因为 AOF 日志记录的是操作命令,不是实际的数据,所以用 AOF 方法做故障恢复时,需要全量把日志都执行一遍,一旦 AOF 日志非常多,势必会造成 Redis 的恢复操作缓慢。

为了解决这个问题,Redis 增加了 RDB 快照。所谓的快照,就是记录某一个瞬间东西,比如当我们给风景拍照时,那一个瞬间的画面和信息就记录到了一张照片。

所以,RDB 快照就是记录某一个瞬间的内存数据,记录的是实际数据,而 AOF 文件记录的是命令操作的日志,而不是实际的数据。

因此在 Redis 恢复数据时, RDB 恢复数据的效率会比 AOF 高些,因为直接将 RDB 文件读入内存就可以,不需要像 AOF 那样还需要额外执行操作命令的步骤才能恢复数据。

Redis 提供了两个命令来生成 RDB 文件,分别是 save 和 bgsave,他们的区别就在于是否在「主线程」里执行:

  • 执行了 save 命令,就会在主线程生成 RDB 文件,由于和执行操作命令在同一个线程,所以如果写入 RDB 文件的时间太长,会阻塞主线程
  • 执行了 bgsave 命令,会创建一个子进程来生成 RDB 文件,这样可以避免主线程的阻塞

redis网络模型是怎么样的?

Redis 6.0 版本之前的单线模式如下图:

img

图中的蓝色部分是一个事件循环,是由主线程负责的,可以看到网络 I/O 和命令处理都是单线程。Redis 初始化的时候,会做下面这几件事情:

  • 首先,调用 epoll_create() 创建一个 epoll 对象和调用 socket() 创建一个服务端 socket
  • 然后,调用 bind() 绑定端口和调用 listen() 监听该 socket;
  • 然后,将调用 epoll_ctl() 将 listen socket 加入到 epoll,同时注册「连接事件」处理函数。

初始化完后,主线程就进入到一个事件循环函数,主要会做以下事情:

  • 首先,先调用处理发送队列函数,看是发送队列里是否有任务,如果有发送任务,则通过 write 函数将客户端发送缓存区里的数据发送出去,如果这一轮数据没有发送完,就会注册写事件处理函数,等待 epoll_wait 发现可写后再处理 。
  • 接着,调用 epoll_wait 函数等待事件的到来:
    • 如果是连接事件到来,则会调用连接事件处理函数,该函数会做这些事情:调用 accpet 获取已连接的 socket -> 调用 epoll_ctl 将已连接的 socket 加入到 epoll -> 注册「读事件」处理函数;
    • 如果是读事件到来,则会调用读事件处理函数,该函数会做这些事情:调用 read 获取客户端发送的数据 -> 解析命令 -> 处理命令 -> 将客户端对象添加到发送队列 -> 将执行结果写到发送缓存区等待发送;
    • 如果是写事件到来,则会调用写事件处理函数,该函数会做这些事情:通过 write 函数将客户端发送缓存区里的数据发送出去,如果这一轮数据没有发送完,就会继续注册写事件处理函数,等待 epoll_wait 发现可写后再处理 。

redis瓶颈在cpu还是内存?

tcp为什么可靠?

TCP协议主要通过以下几点来保证传输可靠性:连接管理、序列号、确认应答、超时重传、流量控制、拥塞控制。

  • 连接管理:即三次握手和四次挥手。连接管理机制能够建立起可靠的连接,这是保证传输可靠性的前提。
  • 序列号:TCP将每个字节的数据都进行了编号,这就是序列号。序列号的具体作用如下:能够保证可靠性,既能防止数据丢失,又能避免数据重复。能够保证有序性,按照序列号顺序进行数据包还原。能够提高效率,基于序列号可实现多次发送,一次确认。
  • 确认应答:接收方接收数据之后,会回传ACK报文,报文中带有此次确认的序列号,用于告知发送方此次接收数据的情况。在指定时间后,若发送端仍未收到确认应答,就会启动超时重传。
  • 超时重传:超时重传主要有两种场景:数据包丢失:在指定时间后,若发送端仍未收到确认应答,就会启动超时重传,向接收端重新发送数据包。确认包丢失:当接收端收到重复数据(通过序列号进行识别)时将其丢弃,并重新回传ACK报文。
  • 流量控制:接收端处理数据的速度是有限的,如果发送方发送数据的速度过快,就会导致接收端的缓冲区溢出,进而导致丢包。为了避免上述情况的发生,TCP支持根据接收端的处理能力,来决定发送端的发送速度。这就是流量控制。流量控制是通过在TCP报文段首部维护一个滑动窗口来实现的。
  • 拥塞控制:拥塞控制就是当网络拥堵严重时,发送端减少数据发送。拥塞控制是通过发送端维护一个拥塞窗口来实现的。可以得出,发送端的发送速度,受限于滑动窗口和拥塞窗口中的最小值。拥塞控制方法分为:慢开始,拥塞避免、快重传和快恢复。

grpc底层的通信协议是什么?

gRPC底层的通信协议是HTTP/2。

HTTP/2 相比 HTTP/1.1 性能上的改进:

  • 头部压缩
  • 二进制格式
  • 并发传输
  • 服务器主动推送资源

1. 头部压缩

HTTP/2 会压缩头(Header)如果你同时发出多个请求,他们的头是一样的或是相似的,那么,协议会帮你消除重复的部分

这就是所谓的 HPACK 算法:在客户端和服务器同时维护一张头信息表,所有字段都会存入这个表,生成一个索引号,以后就不发送同样字段了,只发送索引号,这样就提高速度了。

2. 二进制格式

HTTP/2 不再像 HTTP/1.1 里的纯文本形式的报文,而是全面采用了二进制格式,头信息和数据体都是二进制,并且统称为帧(frame):头信息帧(Headers Frame)和数据帧(Data Frame)

HTTP/1 与 HTTP/2

这样虽然对人不友好,但是对计算机非常友好,因为计算机只懂二进制,那么收到报文后,无需再将明文的报文转成二进制,而是直接解析二进制报文,这增加了数据传输的效率

3. 并发传输

我们都知道 HTTP/1.1 的实现是基于请求-响应模型的。同一个连接中,HTTP 完成一个事务(请求与响应),才能处理下一个事务,也就是说在发出请求等待响应的过程中,是没办法做其他事情的,如果响应迟迟不来,那么后续的请求是无法发送的,也造成了队头阻塞的问题。

而 HTTP/2 就很牛逼了,引出了 Stream 概念,多个 Stream 复用在一条 TCP 连接。

从上图可以看到,1 个 TCP 连接包含多个 Stream,Stream 里可以包含 1 个或多个 Message,Message 对应 HTTP/1 中的请求或响应,由 HTTP 头部和包体构成。Message 里包含一条或者多个 Frame,Frame 是 HTTP/2 最小单位,以二进制压缩格式存放 HTTP/1 中的内容(头部和包体)。

针对不同的 HTTP 请求用独一无二的 Stream ID 来区分,接收端可以通过 Stream ID 有序组装成 HTTP 消息,不同 Stream 的帧是可以乱序发送的,因此可以并发不同的 Stream ,也就是 HTTP/2 可以并行交错地发送请求和响应

比如下图,服务端并行交错地发送了两个响应:Stream 1 和 Stream 3,这两个 Stream 都是跑在一个 TCP 连接上,客户端收到后,会根据相同的 Stream ID 有序组装成 HTTP 消息。

4、服务器推送

HTTP/2 还在一定程度上改善了传统的「请求 - 应答」工作模式,服务端不再是被动地响应,可以主动向客户端发送消息。

客户端和服务器双方都可以建立 Stream, Stream ID 也是有区别的,客户端建立的 Stream 必须是奇数号,而服务器建立的 Stream 必须是偶数号。

比如下图,Stream 1 是客户端向服务端请求的资源,属于客户端建立的 Stream,所以该 Stream 的 ID 是奇数(数字 1);Stream 2 和 4 都是服务端主动向客户端推送的资源,属于服务端建立的 Stream,所以这两个 Stream 的 ID 是偶数(数字 2 和 4)。

再比如,客户端通过 HTTP/1.1 请求从服务器那获取到了 HTML 文件,而 HTML 可能还需要依赖 CSS 来渲染页面,这时客户端还要再发起获取 CSS 文件的请求,需要两次消息往返,如下图左边部分:

如上图右边部分,在 HTTP/2 中,客户端在访问 HTML 时,服务器可以直接主动推送 CSS 文件,减少了消息传递的次数。

grpc相比于http优势在哪?

性能优势

gRPC 消息使用 Protobuf进行序列化。Protobuf 在服务器和客户端上可以非常快速地序列化。Protobuf 序列化产生的有效负载较小,这在移动应用等带宽有限的方案中很重要。

gRPC 专为 HTTP/2(HTTP 的主要版本)而设计,与 HTTP 1.x 相比,HTTP/2 具有巨大性能优势:

  • 二进制组帧和压缩。HTTP/2 协议在发送和接收方面均紧凑且高效。
  • 在单个 TCP 连接上多路复用多个 HTTP/2 调用。多路复用可消除队头阻塞。

代码生成

所有 gRPC 框架都为代码生成提供一流支持。.proto 文件是 gRPC 开发的核心文件,它定义 gRPC 服务和消息的协定。通过此文件,gRPC 框架生成服务基类、消息和完整的客户端。

通过在服务器和客户端之间共享 .proto 文件,可以端到端生成消息和客户端代码。客户端的代码生成消除了客户端和服务器上的消息重复,并为你创建强类型客户端。无需编写客户端可在具有许多服务的应用程序中节省大量开发时间。

严格规范

具有 JSON 的 HTTP API 没有正式规范。开发人员为 URL、HTTP 谓词和响应代码的最佳格式争论不休。

gRPC 规范对 gRPC 服务必须遵循的格式进行了规定。gRPC 消除了争论并为开发人员节省了时间,因为 gRPC 在各个平台和实现中都是一致的。

平时一般用docker做什么?

Docker使用前后对比

  • 在没有使用Docker时,我们开发完毕一个项目,需要打成war包或jar包。然后,在服务器上进行各种环境的安装、配置以及应用程序维护,比如:JDK、Tomcat、数据库等。而且,上述的配置在开发环境、测试服务器、生产服务器(通常会有很多个),都需要进行一遍同样的操作,工作量相当繁重。

  • 在使用了Docker之后,我们可以自己创建一个空的镜像从头构建,也可以使用公共仓库中已经构建好的镜像,直接使用。当需要在不同环境中进行部署时,直接使用构建好的镜像即可,一次构建,多环境多次使用,方便快捷。

算法

  • 剑指 Offer 26. 树的子结构
  • 数组中的第K个最大元素

项目

  • 评论功能的数据库表是怎么设计的?
  • redis在项目中用来干什么,用什么结构?
  • ......

B站后端开发实习一面(30分钟)

MySQL有哪些锁,作用是什么?

  • 全局锁:通过flush tables with read lock 语句会将整个数据库就处于只读状态了,这时其他线程执行以下操作,增删改或者表结构修改都会阻塞。全局锁主要应用于做全库逻辑备份,这样在备份数据库期间,不会因为数据或表结构的更新,而出现备份文件的数据与预期的不一样。

  • 表级锁:MySQL 里面表级别的锁有这几种:


    • 表锁:通过lock tables 语句可以对表加表锁,表锁除了会限制别的线程的读写外,也会限制本线程接下来的读写操作。
    • 元数据锁:当我们对数据库表进行操作时,会自动给这个表加上 MDL,对一张表进行 CRUD 操作时,加的是 MDL 读锁;对一张表做结构变更操作的时候,加的是 MDL 写锁;MDL 是为了保证当用户对表执行 CRUD 操作时,防止其他线程对这个表结构做了变更。
    • 意向锁:当执行插入、更新、删除操作,需要先对表加上「意向独占锁」,然后对该记录加独占锁。意向锁的目的是为了快速判断表里是否有记录被加锁
  • 行级锁:InnoDB 引擎是支持行级锁的,而 MyISAM 引擎并不支持行级锁。


    • 记录锁,锁住的是一条记录。而且记录锁是有 S 锁和 X 锁之分的,满足读写互斥,写写互斥
    • 间隙锁,只存在于可重复读隔离级别,目的是为了解决可重复读隔离级别下幻读的现象。
    • Next-Key Lock 称为临键锁,是 Record Lock + Gap Lock 的组合,锁定一个范围,并且锁定记录本身。

死锁是什么,如何避免?

死锁只有同时满足以下四个条件才会发生:

  • 互斥条件:互斥条件是指多个线程不能同时使用同一个资源
  • 持有并等待条件:持有并等待条件是指,当线程 A 已经持有了资源 1,又想申请资源 2,而资源 2 已经被线程 C 持有了,所以线程 A 就会处于等待状态,但是线程 A 在等待资源 2 的同时并不会释放自己已经持有的资源 1
  • 不可剥夺条件:不可剥夺条件是指,当线程已经持有了资源 ,在自己使用完之前不能被其他线程获取,线程 B 如果也想使用此资源,则只能在线程 A 使用完并释放后才能获取。
  • 环路等待条件:环路等待条件指的是,在死锁发生的时候,两个线程获取资源的顺序构成了环形链

避免死锁问题就只需要破环其中一个条件就可以,最常见的并且可行的就是使用资源有序分配法,来破环环路等待条件

那什么是资源有序分配法呢?线程 A 和 线程 B 获取资源的顺序要一样,当线程 A 是先尝试获取资源 A,然后尝试获取资源 B 的时候,线程 B 同样也是先尝试获取资源 A,然后尝试获取资源 B。也就是说,线程 A 和 线程 B 总是以相同的顺序申请自己想要的资源。

Redis有哪些数据结构,都是如何实现的

略,一面问过

Redis中Zset是如何实现的?

Zset 类型的底层数据结构是由压缩列表或跳表实现的:

  • 如果有序集合的元素个数小于 128 个,并且每个元素的值小于 64 字节时,Redis 会使用压缩列表作为 Zset 类型的底层数据结构;
  • 如果有序集合的元素不满足上面的条件,Redis 会使用跳表作为 Zset 类型的底层数据结构;

在 Redis 7.0 中,压缩列表数据结构已经废弃了,交由 listpack 数据结构来实现了。

TCP和UDP有什么区别?

1. 连接

  • TCP 是面向连接的传输层协议,传输数据前先要建立连接。
  • UDP 是不需要连接,即刻传输数据。

2. 服务对象

  • TCP 是一对一的两点服务,即一条连接只有两个端点。
  • UDP 支持一对一、一对多、多对多的交互通信

3. 可靠性

  • TCP 是可靠交付数据的,数据可以无差错、不丢失、不重复、按序到达。
  • UDP 是尽最大努力交付,不保证可靠交付数据。但是我们可以基于 UDP 传输协议实现一个可靠的传输协议,比如 QUIC 协议。

4. 拥塞控制、流量控制

  • TCP 有拥塞控制和流量控制机制,保证数据传输的安全性。
  • UDP 则没有,即使网络非常拥堵了,也不会影响 UDP 的发送速率。

5. 首部开销

  • TCP 首部长度较长,会有一定的开销,首部在没有使用「选项」字段时是 20 个字节,如果使用了「选项」字段则会变长的。
  • UDP 首部只有 8 个字节,并且是固定不变的,开销较小。

6. 传输方式

  • TCP 是流式传输,没有边界,但保证顺序和可靠。
  • UDP 是一个包一个包的发送,是有边界的,但可能会丢包和乱序。

7. 分片不同

  • TCP 的数据大小如果大于 MSS 大小,则会在传输层进行分片,目标主机收到后,也同样在传输层组装 TCP 数据包,如果中途丢失了一个分片,只需要传输丢失的这个分片。
  • UDP 的数据大小如果大于 MTU 大小,则会在 IP 层进行分片,目标主机收到后,在 IP 层组装完数据,接着再传给传输层。

TCP 和 UDP 应用场景:

由于 TCP 是面向连接,能保证数据的可靠性交付,因此经常用于:

  • FTP 文件传输;
  • HTTP / HTTPS;

由于 UDP 面向无连接,它可以随时发送数据,再加上 UDP 本身的处理既简单又高效,因此经常用于:

  • 包总量较少的通信,如 DNSSNMP 等;
  • 视频、音频等多媒体通信;
  • 广播通信;

TCP为什么可靠?

略,一面也问过了。。

TCP的重传机制、流量控制和拥塞控制怎么实现的?

图解网站(xiaolincoding.com)详细介绍过。

TCP是怎么保持连接的?

如果两端的 TCP 连接一直没有数据交互,达到了触发 TCP 保活机制的条件,那么内核里的 TCP 协议栈就会发送探测报文。

  • 如果对端程序是正常工作的。当 TCP 保活的探测报文发送给对端, 对端会正常响应,这样 TCP 保活时间会被重置,等待下一个 TCP 保活时间的到来。
  • 如果对端主机宕机(注意不是进程崩溃,进程崩溃后操作系统在回收进程资源的时候,会发送 FIN 报文,而主机宕机则是无法感知的,所以需要 TCP 保活机制来探测对方是不是发生了主机宕机),或对端由于其他原因导致报文不可达。当 TCP 保活的探测报文发送给对端后,石沉大海,没有响应,连续几次,达到保活探测次数后,TCP 会报告该 TCP 连接已经死亡

所以,TCP 保活机制可以在双方没有数据交互的情况,通过探测报文,来确定对方的 TCP 连接是否存活,这个工作是在内核完成的。

TCP 保活机制

在 Linux 内核可以有对应的参数可以设置保活时间、保活探测的次数、保活探测的时间间隔,以下都为默认值:

net.ipv4.tcp_keepalive_time=7200
net.ipv4.tcp_keepalive_intvl=75  
net.ipv4.tcp_keepalive_probes=9
  • tcp_keepalive_time=7200:表示保活时间是 7200 秒(2小时),也就 2 小时内如果没有任何连接相关的活动,则会启动保活机制
  • tcp_keepalive_intvl=75:表示每次检测间隔 75 秒;
  • tcp_keepalive_probes=9:表示检测 9 次无响应,认为对方是不可达的,从而中断本次的连接。

也就是说在 Linux 系统中,最少需要经过 2 小时 11 分 15 秒才可以发现一个「死亡」连接。

TCP 保活的这个机制检测的时间是有点长,我们可以自己在应用层实现一个心跳机制。

比如,web 服务软件一般都会提供 keepalive_timeout 参数,用来指定 HTTP 长连接的超时时间。如果设置了 HTTP 长连接的超时时间是 60 秒,web 服务软件就会启动一个定时器,如果客户端在完成一个 HTTP 请求后,在 60 秒内都没有再发起新的请求,定时器的时间一到,就会触发回调函数来释放该连接。

web 服务的 心跳机制

其他

算法:

项目:

  • 项目的架构为什么这么设计?怎么继续维护?
  • 介绍下第二个项目

其他:

  • 职业规划是什么?
  • 能实习多久,什么时候可以来实习?

面试感受

运气很不错,遇到的面试官人很好,问的问题比较基础,没有刁钻的问题,面试的内容说实话不算太难,但是有些问题还是没有回答很好。一面有算法,二面竟然没有算法。可能是实习面试缘故,这两场实习面试,都比较简单。

历史好文:

后端突击训练营,又开始卷了!

又被百度捞起来了,能赢吗?

等不及,冲滴滴去了!

不愧是微信啊,问的范围贼广!

继续滑动看下一个
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存